

COMPUTER SCIENCE & IT

©2025-26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test

COMPUTER SCIENCE & I

GATE & PSUs

STUDY MATERIAL

COMPILER DESIGN

 COMPILER DESIGN

26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test-Series

COMPUTER SCIENCE & I

GATE & PSUs

STUDY MATERIAL

COMPILER DESIGN

Series

1

COMPUTER SCIENCE & IT

COMPUTER SCIENCE & IT COMPILER DESIGN

©2025-26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test-Series
59B, Kalu Sarai Hauz Khas, New Delhi-110016. Ph. 9990357855, 9990657855 www.engineersinstitute.com

2

C O N T EN T

1. INTRODUCTION OF COMPILER DESIGN &

LEXICAL ANALYSIS ……………………………….................... 03-33

2. SYNTAX ANALYSIS ……………………………………............. 34-89

3. SYNTAX DIRECTED TRANSLATION ………………………… 90-120

4. CODE GENERATION ………………………………………………. 121-145

5. PRACTICE SET ……………………………………………………... 146-153

COMPUTER SCIENCE & IT COMPILER DESIGN

©2025-26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test-Series

3

CHAPTER-1
INTRODUCTION OF COMPILER DESIGN

AND LEXICAL ANALYSIS

Language Processing System
 Language processing is the ability of a computer to understand a program written in high level

language by converting into executable program (binary code).
 These are the following steps in the language processing system:

After these steps, loader puts the program into the computer memory.
The program is run by operating system.
Input are read from I/O devices and from memory. Output is written to I/O devices and to memory.
This is shown in below figure.

Now we will understand the each of the steps of language processing system.
1. Preprocessor:

Preprocessor produce input to compiler.
They may perform following function
(a) Microprocessing: A preprocessor may allow a user to define macro that are short hands fro

longer constructs

COMPUTER SCIENCE & IT COMPILER DESIGN

©2025-26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test-Series
59B, Kalu Sarai Hauz Khas, New Delhi-110016. Ph. 9990357855, 9990657855 www.engineersinstitute.com

4

(b) File inclusion: A preprocessor may include header file into the program text. For example C
processor causes, the context of the file < global.h > to replace the statement # include <
global.h > when it processes a file, containing this statement.

(c) Rational Preprocessor :- These processor augment older languages with more modern flow
of control and data structuring facilities, for example, such a preprocessor might provide user
with built in macros for construct like while statement or if – statements, where none exists in
the programming language itself.

(d) Language Extensions :- These processors attempt to add capabilities to the language by what
amounts to built I macros.

2. Assemblers :- Some compilers produce the assembly code as output which is given to the

assemblers as an input. The assemblers is a kind of translator which takes the assembly program
as input and produces the machine code as output.

An assembly code is a mnemonic version of machine code. The typical assembly instructions are
given below.

 MOV a,R�
 MUL # 5,R�
 ADD #7, R�
 MOV R�,b
The assembler converts these instructions in the binary languages which can be understood by
the machine. Such a binary code is often called as machine code. This machine code is a re-
locatable machine code that can be passed directly to the loader / linker for execution purpose.
The assembler converts the assembly program to low level machine language using two passes.
A pass means one complete scan of the input program. The end of second pass is the re-locatable
machine code.

3. Loaders and Link Editors :-
A program called a loader performs loading and link editing. The process of loading consists of
taking re–locatable machine code altering the re-locatable addresses and placing altered
instruction and data in memory at the proper location.
Linker editor allows us to make a single program from several files of re-locatable machine code
and planning the altered instruction and a data in memory at the proper location.
The link editor allows us to make a single program from several files of re-locatable machine
code. These files may have been the result of several different compilations and one or may be
library files of routine provided by the system and available to any program needs them

Loader
Loading

Link Editing

Complier Assembler
Source

Program

Machine

Code Program

Assembly
language

Fig: Role of assembler

Preprocessor Complier
Source

Program

Machine

Code Program

Skeleton
source

Fig: Role of Preprocessor.

COMPUTER SCIENCE & IT COMPILER DESIGN

©2025-26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test-Series

5

Translator
 Computer can understand only machine level language (binary, 0 & 1)
 It is difficult to write and maintain programs in machine level language. The programs written in

the code of high level language and low level language need to be converted into machine level
language using translator for this purpose.

 Translator are just computer programs which accept a program written in high level or low level
language and produce an equivalent machine level program as output.

 Translators are of three types:
(i) Assembler
(ii) Compiler
(iii) Interpreter

 Assembler is used for converting the code of low level language (assembly language) into
machine level language.
Compiler and interpreter are used to convert the code of high level language into machine
language. The high level program is known as source program and the corresponding machine
level program is known as object program is known as object program. Although both compilers
and Interpreters perform the same task but there is a difference in their working.

 A compiler searches all the errors of a program and lists them. if the program is error free then it
converts the code of program into machine code and then the program can be executed by
separate commands.

 All interpreter checks the error of a program statement by statement. After checking are
statement, it converts that statement into machine code and then executes that statement. The
process continuous until the last statement or program occurs.

Compiler
Compiler is a program which takes the source program written in high level language (C, C++, Java)
as input and translates it into an equivalent another language C Assembly language)

Note: Output of compiler may be assembly code or re-locatable object code or even an executable
program or if something goes wrong, output is a bunch of error message.
 During the compilation if some error are encountered the compiler displays the error messages.
The compile time error include three errors.
(i) Syntax error
(ii) Type checking errors
(iii) Compiler crashes
Example 1: If there is an error in the declaration of a variable. The compiler will not recognize the
variable as such when it is used, and it will complain about “undeclared variable”.
Example 2: Consider following C statement
int c
 Here compiler give the error with semicolon missing.

COMPUTER SCIENCE & IT COMPILER DESIGN

©2025-26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test-Series

6

Types of Compiler
(1) Cross – compiler
 It is a compiler which generates code for a platform different than the platform on which the

compiler itself runs.
 Compilers for embedded targets are almost always cross-compiles, since few embedded targets

are capable of hosting the compiler itself.
 Cross compilers requires a build system which does not assume that the host and target system are

compatible, i.e., you cannot run a target executable at build time.
 Cross-compilation can also be applied to the compile itself. This is referred to as Canadian cross

compilation, which is a technique for building a cross compiler on host different from the one the
compiler should be run on. In this case we have three platforms.
(i) The platforms the compiler is built on (build).

 The platform which hosts the compiler (host).
 The platform for which the compiler generates code (target)
Cross platform
It is refers to the things which are working on many different platforms (different operating system or
different processor or bit size)
Incremental Compiler
 An incremental compiler is one that can recompile only those portion of a program that have been

modified.
 Ordinary compilers must process entire modules or programs.
Anatomy of compiler
 Computer’s can’t directly understand our program (written in c, c++, Java).
 Computer’s only understand machine code (sequences of instructions expressed as ones an

zeroes.
 Compiler are programs that translates our program into machine code that a computer can

understand.
Note: Compiler output can be assembly code/machine code or reloctable object code.
Example:
include <stdio.h>

0101111110
int main ()

0111110001
{

Compiler 0111001011
 printf ("EII");

0111100011
 return 0;

0111100011
}

Source program in C Machine Code

 

 A basic compiler contain two parts:
(i) Front end
(ii) Back end

 The front end takes program code and converts it to an intermediate code.

COMPUTER SCIENCE & IT COMPILER DESIGN

©2025-26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test-Series

7

 The back end takes intermediate e code and converts it to machine code.
 Some compiler output will be assembly code
 An optimizer can be used to transform intermediate code to make it more efficient.

Note: Optimizers are not monolithic they often consists of 20 or more self contained optimization
phases.

The Phases of Complier :
As we have discussed earlier the process of compilation is carried out in two parts. “Analysis and
synthesis”. Again the analysis is carried out in three phases: lexical analysis, syntax analysis and
semantic analysis. And the synthesis is carried out with the help of intermediate code generation, code
generation and code optimization. Let us discuss these phases one by one.
1. Lexical Analysis :-

 This lexical analysis is also called scanning.
 It is the phase of compilation in which the complete source code is scanned and your source

program is broken up into group of strings called token
 A token is a sequence of characters having a collective meaning.
 For example if some statement in your source code follows,

total = count + rate *10
Then in lexical analysis phase this statement is broken up into series of token as follows.

1. The identifier total 2. The assignment symbol
3. The identifier count 4. The plus sign
5. The identifier rate 6. The multiplication sign
7. The constant number 10
Note: The blank characters which are used in the programming statement are eliminated
during the lexical analysis phase.

COMPUTER SCIENCE & IT COMPILER DESIGN

©2025-26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test-Series

8

2. Syntax Analysis:-
 The syntax analysis is also called parsing
 In this phase the tokens generated by the lexical analyzer are grouped together to form a

hierarchical structure. The syntax analysis determines the structure of the source string by
grouping the tokens together.

 The hierarchical structure generated in this place called parse tree or syntax tree.
 For the expression total = count + rate ∗ 10 the parse tree can be generated as follows.

Figure Parse tree for total = count + rate∗10. In this statement ‘total = count + rate∗10’ first of
all rate∗10 will be considered because in arithmetic expression the multiplication operation
should be performed before the addition. And then the addition operation will be considered.
For building such type of syntax tree the production rules are to be designed. The rules are
usually expressed by context free grammar. For the above statement the production rules are
(1) E  identifier
(2) E  number
(3) E  E� + E�
(4) E  E� ∗ E�
(5) E  (E)

3. Semantic Analysis :-

Once3 the syntax is checked in the syntax analyser phase the next phase i.e the semantic analysis
determines the meaning of the source string. For example meaning of source string means
matching of parenthesis in the expression, or matching of if …… else statements or performing
arithmetic operations of expressions that are type for example

Thus these three phases are performing the task of analysis. After these phases an intermediate
code gets generated.

4. Intermediate Code Generation :

The intermediate code is a kind of code which is easy to generate and this code can be easily
converted to target code. This code is variety of forms such as three address code, quadruple,
triple, posix. Here we’ll consider an intermediate code in three address code form. This is like an
assembly language. The address code consists of instructions each of which has at the most three
operands. For example

COMPUTER SCIENCE & IT COMPILER DESIGN

©2025-26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test-Series

9

 t� ∶ = int to �loat
 t� ∶ = rate × t�
 t� ∶ = count + t�
 total : = t�
There are certain properties which should be possessed by the three address code and those are,
1. Each three address instruction has at the most one operator in addition to the assignment.

Thus the complier has to decide the order of the operations deviced by the three address code.
2. The complier must generate a temporary name to hold the value computed by each

instruction.
3. Some three address instructions may have fewer than three operands. For example first and

last instruction of the above given three address code. i.e
t� : = int to �loat (10)
total : = t�.

5. Code Optimization :-
The code optimization phase attempts to improve the intermediate code. This is necessary to

have faster executing code or less consumption of memory. Thus by optimizing the code the
overall running time of the target program can be improved

6. Code Generation :-
In code generation phase the target code gets generated. The intermediate code instructions

are translated into sequence of machine instructions
 MOV rate, R�
 MUL # 10.0,R�
 MOV count, R�
 ADD R�, R�
 MOV R�,total

Symbol Table Management:

 To support these phases of complier a symbol table is maintained. The task of symbol table is to

store identifiers (variables) used in the program

